Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated in Stable Nanoporous Hosts

Conrad Ingram, Ph. D., Principal Investigator Assistant Professor of Chemistry

Mark Mitchell, Ph. D., Co-Principal Investigator Associate Professor of Chemistry Clark Atlanta University

Presented at

The University Coal Research/ Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference

Marriott City Center Hotel, Pittsburgh 9-10, 2004

Outline of Presentation

- Research objectives and background
- Research progress on the synthesis of zeolite Y nanoparticles
- Research progress on the synthesis of nanoporous hosts
- Summary
- Future plans for synthesis of nanocomposite catalysts and catalysts testing
- Acknowledgements

Research Objective

To synthesize a composite catalysts system (comprised of **Zeolite Y** nanoparticles encapsulated in stable nanoporous hosts) that is useful for heavy oil upgrading.

Motivation

Increasing demand for stable, resistant and very active catalysts for the conversion of heavy petroleum feedstock and residue to useful fuels (naptha and middle distillates).

Zeolite Y as Petroleum Catalyst

 $7.4 \times 7.4 \text{Å}$

- Porous aluminosilicates with SiO₂ and AlO₂tetrahedra
- Si/Al ratio of zeolite ~ 2.5
- Synthetic counterpart to natural faujasite
- Extensively used as a component FCC process in the petroleum industry (Steam stabilized version-USY with Si/Al= 9)
- Typical particle is in micron size range
- Limitation as catalyst:
 - catalyst deactivation

Advantages of Zeolite Y Nanoparticles over Conventional Micron-Size Zeolite Y

- Reduced diffusion path length, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out.
- Reduced over-reaction and hence reduced pore blockage and active sites deactivation.

Our Research Approach

• Synthesis of aluminosilicate nanoporous materials with pore diameter up to 30 nm (300 Å).

- Synthesis of zeolite Y nanoparticles (~30 nm) within the pores of the nanohosts.
- Testing the nanocomposite catalysts for the catalytic conversion of heavy petroleum substrates.

Role of the Nanoporous Host

- Perform as a mild hydrocracking catalyst for the initial conversion of bulky heavy oil substrates.
- Screen bulky hydrocarbon substrates from blocking the entrance to the zeolite pores, (reduce the extent of non selective, undesirable reactions on the external surfaces of the zeolite nanocrystals).

Synthesis of Nanoporous Silicate

Surfactant templating mechanism

J. S. Beck, J. C. Vartuli, W. J. Roth, M.E. Leonowicz, C. T. Kresge, K. D. Schmitt, C-TW Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, JACS 114 270 (1992) 10834-43.

Inserting Zeolite Y Nanoparticles Through Direct Synthesis

Progress on Zeolite Y Synthesis

Standard Zeolite Y synthesis:

- sodium hydroxide (NaOH)
- sodium aluminate (NaAlO₂)
- sodium silicate
- High shear mixing conditions, 24 h at RT and 22 h at 100°C. (molar composition: 4.62Na₂O:Al₂O₃:SiO₂:180 H₂O)

(Verified Synthesis Recipe for Zeolites, H. Robson, 1997)

Nanoparticles Zeolite Y Synthesis:

Method 1

- sodium chloride
- aluminum isopropoxide- [(CH₃)₂CHO]₃Al
- tetraethylorthosilicate $(TEOS) (C_2H_5O)_4Si$
- tetramethylammonium hydroxide (TMAOH)- $(C_2H_5)_4$ NOH
- filter clear solution
- stir for 3 days RT, 4 days at 100°C
- recover product by centrifuge at 15000 g for 40 minutes

Method 2

method 1 + with NaOH instead of NaCl

Method 3

method 1 + tetramethylammonium bromide (TMABr) - (C₄H₁₂NBr)

 $(1Al_2O_3:4.36SiO_2:2.3TMAOH:0.6TMABr:0.048Na_2O)$

Yan et al., Microporous and Mesoporous materials, 2003

X-Ray Diffraction Patterns of Zeolite Y

No crystals using Ludox AS-30, HS-30 as SiO₂

Dynamic Light Scattering Particle Size Analysis

Atomic Force Microscope Image of Zeolite Nanoparticles from NaCl+TMAOH+ TMABr + Al Iso.

110 x 60 x 27 nm

Future Work on Zeollite Y syntheis

Continue to explore synthesis variables to reduce the size of the nanocrystals.

Progress on the Synthesis of Nanoporous Host

General synthesis approach

Precursor: (TEOS, Al Isopropoxide)

H+
$$(C_{18}H_{35}(OCH_2CH_2)_{10}OH)$$

40°C, 24 hr, then 90°C 24 hr.

Nanostructured Organosilicate

Extraction in EtOH/HCl

Nanoporous Organosilicate

Organic Templates Used

Nonionic Alkyl (polyethylene oxide) Surfactants

Brij 30	$C_{12} (EO)_4$
Brij ₇₈	$C_{16} (EO)_{10}$
Brij ₇₆	$C_{18}(EO)_{10}$

Nonionic Triblock Copolymers

Pluronic L-121	$EO_5PO_{70}EO_5$
Pluronic P-64	$EO_{13}PO_{30}EO_{13}$
Pluronic F-68	$\mathrm{EO_{80}PO_{30}EO_{80}}$
Pluronic P-123	$\mathrm{EO_{20}PO_{70}EO_{20}}$

Cationic Surfactants

Cetyltrimethylammonium CH₃(CH₂)₁₅N(CH₃)₃⁺

(EO = ethylene oxide units, PO = propylene oxide units)

Results for Synthesis of All Silica/Aluminosilicate Nanoporous Host

X-Ray Diffraction Pattern of Nanoporous

Nitrogen Adsorption Isotherm of Nanoporous SBA 15

Pore size 4 nm (40 Å)

Surface area : 980 m²/g

Synthesis of Organosilicate Nanoporous Host (Acid condition and nonionic surfactant)

Nanostructured Organosilicate

Extraction in EtOH/HCl

Nanoporous Organosilicate

X-Ray Diffraction Patterns

Nitrogen Adsorption-Desorption Isotherms

Isotherms acquired on a Micromeretics ASAP 2010 Porosimeter

¹³C Solid State Magic Angle Spinning NMR Spectrum of Extracted Sample

This shows that Si-C bond remained in-tact in the product.

²⁹Si Solid State Magic Angle Spinning NMR Spectrum of Extracted Sample

67 % condensation of the organosilicate precursor was observed.

Weight-Loss Thermogram of "As-synthesized" Phenylene-bridged Organosilicate

Weight-Loss Thermogram of "Ethanol/HCl Extracted" Phenylene-bridged Organosilicate

Synthesis of Organosilicate Nanoporous Host (Base condition & cationic template)

Nanostructured Organosilicate

Extraction in EtOH/HCl

Nanoporous Organosilicate

X-Ray Diffraction

Adsorption/Desorption Isotherm

Weight-Loss Thermogram of "As-synthesized" Phenylene-bridged Organosilicate

¹³C Solid State Magic Angle Spinning NMR Spectrum of Extracted Sample

²⁹Si Solid State Magic Angle Spinning NMR Spectrum of Extracted Sample

AFM Topography of Phenylene-Bridged Nanoporous Organosilicate

Instrument: Thermomicroscopes AutoProbe CP Research Scanning Probe Microscope (SPM)

Scan mode: Non-contact mode in air at a rate of 500nm/s.

Canilever: Gold coated V-shaped silicon nitride cantilever with resonant frequency =117.08 kHz. and spring constant of 0.5 N/m. Tip radius= 10 nm

Summary

- Successful synthesis of zeolite Y nanoparticles in the presence of organics to < 100 nm, but further reduction in particle size needed.
- Successful synthesis of a wide range of silicate, aluniosilicate, and organosilicate nanoporous hosts up 3+ nm, but further expansion of pore diameter needed.

Summary of Organosilicate Synthesis

A.

- High surface area nanoporous phenylene-briged organosilicate was synthesized by <u>acid</u> catalyzed hydrolysis and condensation in the presence of 1,4 bis-triethoxysily benzene and non-ionic oligomeric surfactant Brij 76 (C₁₈H₃₅ (OCH₂CH₂)₁₀OH) as template.
- Material has pore diameter of 27.4 Å, pore volume 0.46 cm³/g, and surface area of 784 m²/g.
- Approximately 67 % condensation of the precursor was achieved.
- **B.** High surface area nanoporous phenylene-briged organosilicate was also synthesized by <u>base</u> catalyzed hydrolysis and condensation in the presence of 1,4 bis-triethoxysily benzene and catonic surfactant $(C_{16}H_{33}N(CH_3)_3Br$ as template.
 - •Material has pore diameter of 31 Å, and pore volume of 0.58 cm³/g, and surface area of 876 m²/g.
 - •Approximately 80 % of the precursor was achieved.

Future Work

- Continue to explore synthesis variables to reduce the size of the nanocrystals
- Expand the pore dimension of nanoporous hosts from 4 nm towards 30 nm using pore size expanders e.g. trimethylbenzene
- Insert zeolite Y nanocrystals in nanoporous materials
- Catalysts testing.

Acknowledgements

Funding source

• Department of Energy DE-FG26-02NT41676

Personnel

- Yohannes Ghirmazion Graduate Student (Chemistry)
- Emmanuel Karikari
- Taurean Hodges
- Ifedapo Adeniyi

- Research Scientist (Engineering)
- Undergraduate Student (Chemistry)
- Undergraduate (Engineering)